Representation of Solutions to Bsdes Associated with a Degenerate Fsde
نویسندگان
چکیده
In this paper we investigate a class of decoupled forward–backward SDEs, where the volatility of the FSDE is degenerate and the terminal value of the BSDE is a discontinuous function of the FSDE. Such an FBSDE is associated with a degenerate parabolic PDE with discontinuous terminal condition. We first establish a Feynman–Kac type representation formula for the spatial derivative of the solution to the PDE. As a consequence, we show that there exists a stopping time τ such that the martingale integrand of the BSDE is continuous before τ and vanishes after τ . However, it may blow up at τ , as illustrated by an example. Moreover, some estimates for the martingale integrand before τ are obtained. These results are potentially useful for pricing and hedging discontinuous exotic options (e.g., digital options) when the underlying asset’s volatility is small, and they are also useful for studying the rate of convergence of finite-difference approximations for degenerate parabolic PDEs.
منابع مشابه
REPRESENTATION OF SOLUTIONS TO BSDEs ASSOCIATED WITH A DEGENERATE FSDE BY
In this paper we investigate a class of decoupled forward–backward SDEs, where the volatility of the FSDE is degenerate and the terminal value of the BSDE is a discontinuous function of the FSDE. Such an FBSDE is associated with a degenerate parabolic PDE with discontinuous terminal condition. We first establish a Feynman–Kac type representation formula for the spatial derivative of the solutio...
متن کاملUniqueness of L solutions for multidimensional BSDEs and for systems of degenerate parabolic PDEs with superlinear growth generator
We deal with the unique solvability of multidimensional backward stochastic differential equations (BSDEs) with a p-integrable terminal condition (p > 1) and a superlinear growth generator. We introduce a new local condition, on the generator (see Assumption (H4)), then we show that it ensures the existence and uniqueness, as well as the L-stability of solutions. Since the generator is of super...
متن کاملErgodic BSDEs under weak dissipative assumptions
In this paper we study ergodic backward stochastic differential equations (EBSDEs) dropping the strong dissipativity assumption needed in [12]. In other words we do not need to require the uniform exponential decay of the difference of two solutions of the underlying forward equation, which, on the contrary, is assumed to be non degenerate. We show existence of solutions by use of coupling esti...
متن کاملProgressive enlargement of filtrations and Backward SDEs with jumps
This work deals with backward stochastic differential equation (BSDE) with random marked jumps, and their applications to default risk. We show that these BSDEs are linked with Brownian BSDEs through the decomposition of processes with respect to the progressive enlargement of filtrations. We prove that the equations have solutions if the associated Brownian BSDEs have solutions. We also provid...
متن کاملBackward SDEs with constrained jumps and Quasi-Variational Inequalities
We consider a class of backward stochastic differential equations (BSDEs) driven by Brownian motion and Poisson random measure, and subject to constraints on the jump component. We prove the existence and uniqueness of the minimal solution for the BSDEs by using a penalization approach. Moreover, we show that under mild conditions the minimal solutions to these constrained BSDEs can be characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005